
The Creation of Simulation with an Algorithm 
Optimisation in Java for the Teaching Process 

 

Roman Horváth – Jana Fialová 
Department of Mathematics and Computer Science, 

Faculty of Education, Trnava University in Trnava, Trnava, Slovakia 
roman.horvath@truni.sk, jana.fialova@truni.sk 

 
 

Abstract—At the Faculty of Education, we decided to use the 
current situation related to the spread of the COVID-19 vi-
rus. In one of the subjects whose syllabus corresponds to this 
topic, we included the creation of a simulation of the spread 
of the disease. While creating the sample example we describe 
in this article, we found that some original Java algorithms 
used in our programming framework are not as efficient as 
they could be. So, we focused on optimising these algorithms 
(a pair of related algorithms in the field of analytical geome-
try). Since it was an activity performed as a part of the crea-
tion of this simulation, we decided to publish it in this paper 
as well. 

I. INTRODUCTION 

 
The subject of modelling and simulation of systems 

(MSS) is taught in the study programme computer science 
in combination with another subject (CS) at the Faculty of 
Education of Trnava University in Trnava. The current sit-
uation gave us the idea of including a simulation of the 
spread of viruses in this subject. Nevertheless, the simula-
tion had to be created first. 

Often the SIR or SIRS model is used [1, 2, 3]. This model 
divides the individuals into three groups or states S – sus-
ceptible, I – infected, and R – removed. In short, the sus-
ceptible subjects are those who were not infected, and the 
removed might be those who were healed (or died). The last 
S in SIRS model means that removed subjects may return 
to the susceptible state and be infected again. 

The simulation was ready to run after setting and imple-
menting a series of rules of how to transit between the 
states. Mostly the solution was to define a set of values 
(constants or variables) that express the ranges of probabil-
ities for a change to occur. The significant advantage (due 
to its good visual representation) is to implement the sub-
jects (persons) as moving particles and take the probability 
value ranges into account according to the distance of par-
ticles. 

II. THE SIMULATION SETUP 

The most common is to use the SIR model. There are 
countless ways on how to implement this model, e.g. [4, 5]. 
Our implementation was divided into few phases. The first 
phase included adopting the model to our needs. As we 
show, we set the rules slightly different from the original 
model. It is more like the SEIR model [6], but it distin-
guishes even more states: susceptible (clean), exposed (in-
fected, but not sick), sick (infected1), quarantined (in-
fected2), healed (removed1), and deceased (removed2). 
The exposed ones cannot be quarantined because they do 

not know yet that they spread the virus. They will become 
sick after incubation time. The sick and quarantined may 
heal or die; the sick ones, though, become quarantined after 
some delay needed to “lock them down.” 

Each particle (person) will be represented by dot with a 
specific colour that expresses its state. The circle around the 
dot indicates that the person is isolated in the quarantine and 
cannot move or affect other persons. Later, as the simula-
tion improves, we will implement the option for the persons 
to stay home, which will also be indicated by a circle 
around a particular dot. In parallel with the movement of 
persons on the screen, we will draw a graph on the screen 
placed underneath the dots and expressing ratio changes in 
time of the simulated persons’ states. More details are avail-
able (in Slovak) at [7]. 

In the preparation phase, we considered the use of an al-
gorithm computing the distance of point from a line seg-
ment (wall) that is tightly connected to the computationally 
simpler version algorithm – computing the distance of a 
point from a line. The framework used in our work [8, 9] 
(that had been developed and actively used in many ways 
for about ten years; see for example: [10, 11, 12]) contains 
several algorithms in the field of analytical geometry: the 
nearest point on the circle, the nearest point on the line, the 
nearest point on the line segment, the intersection of the 
lines, the intersection of the line segments, the intersections 
of the circles, the distance of the line from the circle, and so 
on. Most of them are our implementation, in fact, with one 
exception: the calculation of the distance of a point from a 
line and a line segment – just the algorithm we wanted to 
use in this work. It gave us a feeling of inconsistency, so 
before using it, we decided to perform a few tests and use 
them to decide whether to continue to use “the foreign im-
plementation” in the programming framework, or not. 

III. OPTIMISING THE POINT TO LINE DISTANCE 

ALGORITHM 

The first tests concerned the algorithm for calculating the 
distance of a point from a line. Because we do not have di-
rect access to the source code of the current Java implemen-
tation (build 1.8.0_241-b07), we selected implementations 
from freely available online sources [13, 14, 15]. The im-
plementation [13] was the closest to our way of implemen-
tation and was suitable for optimisation. We decided to op-
timise it and after a few tests use it in our framework. The 
optimisation process is described here using Java/Py-
thon-like pseudocode. The pseudocode comes directly 
from Java code, but to save room, the blocks are distin-
guished by indentation (like in Python), declarations are 
made by the first occurrence of the variables (all variables 

160 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



are of the double type) and unnecessary characters and key-
words (like the double type in declarations; the “lonely” 
semicolons – at ends of the lines, but not between com-
mands at the same line; or the parentheses in the if state-
ment) were removed. To spare more space and improve the 
readability, the lines of code are numbered (so the identical 
lines do not have to be repeated, and changed rows can be 
referenced). 

  
As mentioned above the algorithm for calculating the 

distance between a point and a line was taken from a source 
[13]. The original algorithm follows. It receives the input 
values in six parameters – coordinates of two points placed 
on a line (x₁, y₁ and x₂, y₂) and the coordinates of a point 
(px, py) to which we want to know the distance. The return 
value is the square of the distance between the line and the 
third point (this is why the original Java method is named 
ptLineDistSq). 

// The first line calculates the denominator pd₂ for the parame-

ter 

// u (at line 05, below; to get nearest point on the line – x, y): 

// That means that points are coincident.

// Set the nearest point coordinates (x, y) to any original 

 // x and y: 

// Calculate parameter u and then coordinates x, y: 

// Calculate the squared distance of x, y from px, py: 

Optimisation step 1 

Line 01: Since there are multiplications of the same 
terms, we may reverse the subtraction terms, and the result 
remains the same: 

Line 03: There is no reason for use y₂ since when pd₂ (the 
distance of points on the line) is zero, y₁ is identical to y₂ so 
that we will change it to y₁, it will help us further: 

Optimisation step 2 

We will precalculate the subtractions of line coordinates 
(used, e.g. at line 01) and replace them wherever they oc-
cur. This step shifts all line numbers, but we will not repeat 
them for now. The replacements are at lines 02, 06, 07, and 
08 (according to new numbering): 

// (This line is new and the first 

// replacement is next to it.)

…

Optimisation step 3 

We will shift the whole system of three points to zero by 
eliminating the values of x₁ and y₁ within. Since the sub-
traction of coordinates in x₂ and y₂ remains the same (we 
already did the subtraction in the previous optimisation 
step), the change applies only to px, py and x, y. To keep 
track, we repeat all lines with new numbering: 

// This eliminates x₁, y₁ from px, py.

 // This eliminates x₁, y₁ from x, y when 

    // .

 // And this in the other case: 

// Here are redundant (repeating) subtractions of px and py. 

// We can eliminate them, too – in the next step.

Optimisation step 4 

We will simplify the line 10. If we subtract the px and py 
values on lines 05, 08, and 09, then we do not have (we 
must not) to do it on line 10: 

Optimisation step 5 

If we “extract” the subtraction of px and py from both 
if-else branches, we will get rid of one of the branches al-
together: 

  
After the optimisation, we performed a series of tests. 

We measured the time of two million runs of each algo-
rithm (with precisely the same pre-generated random data 
sets) and that task we repeated 50 times. From the gained 
data we calculated the median ( ). The gained data is in ta-
ble 1. The meanings of the columns and rows are as fol-
lows: 

{Aln} – the Java build 1.8.0_241-b07 implementation. 
{Bln} – the algorithm taken from [13]. 

161 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



{Cln} – the optimised version of the {Bln} algorithm. 
{Dln} – the algorithm taken from [14]. 
{Eln} – the algorithm taken from [15]. 
 – the median of the measured time values in millisec-

onds. 
NaNs – number of NaN values produced in two million 

runs of the algorithm (receiving random parameters). 

Table 1. The data sets for the algorithm of point to line dis-
tance (squared) – the first batch. 

 {Aln} {Bln} {Cln} {Dln} {Eln} 

run 1 

14031.3 0.8 0.2 12256.3 0.8 

NaNs 5 0 0 5 5 

run 2 

14282.6 0.8 0.4 12486.9 0.8 

NaNs 4 0 0 4 4 

run 3 

14318.9 0.85 0.2 12514.55 0.9 

NaNs 5 0 0 5 5 

run 4 

14138.8 0.8 0.2 12166.95 0.7 

NaNs 4 0 0 4 4 

run 5 

14045.3 0.8 0.5 12170.2 0.7 

NaNs 4 0 0 4 4 

  
Further processing follows below the second algorithm 

optimisation steps. We did not see any room for optimisa-
tion of the algorithm [14]. Notice that three algorithms [13, 
14, 15] produced the NaNs. This fact only should be suffi-
cient to reject the algorithms; nevertheless, we tested them 
and compared the data sets to show whether there is a sig-
nificant difference in time. 

IV. OPTIMISING THE POINT TO LINE SEGMENT 

DISTANCE ALGORITHM 

The second algorithm (calculating the distance of a point 
from a line segment) is in principle the same as the previous 
one, except that here we need to ensure that the point lies 
precisely on the line segment (not on the line as a whole). 
The original algorithm (taken from source [13]) looks like 
this: 

// The points are coincident.

// The point lies outside the first end 

   // of the segment.

// The point lies outside the other 

    // end of the segment.

Optimisation step 1 

We set up a temporary substitution first – until we prove 
that we can safely use the same subtractions (x₂ −= x₁; y₂ −= 
y₁) as in the point to line distance algorithm: 

Like in the previous case, we may rewrite the subtrac-
tions x₁ − x₂, y₁ − y₂ at line 01 the other way around: x₂ − 
x₁, y₂ − y₁. Thanks to that we use the substitution at lines 
01, 05, 11, and 12: 

Optimisation step 2 

In this step we shift the system to zero, that means that 
we choose one point (x₁, y₁) that we subtract from all points 
in the system – including itself, which makes it the zero 
point. Take a look at these lines of code: 

// (Will be rewritten as: x₂ −= x₁) 

// (Will be rewritten as: y₂ −= y₁)

Now we recognise that Δx and Δy are modified (shifted) 
x₂ and y₂ so that we can dismiss the Δx and Δy substitutions. 
All changes are transferred here: 

Since the x₁ and y₂ became zeroes, we will ignore them 
on the lines below. 

// x₁ = x₁ − x₁  means that  x₁ = 0 

// y₁ = y₁ − y₁  means that  y₁ = 0 

// (Will be rewritten as: px −= x₁)

// (Will be rewritten as: py −= y₁)

See line 03 in the original algorithm. There y₂ has the 
same value as y₁ so that we can write: 

  
In the next step, we will also remove the duplicate sub-

tractions of px and py at line 18 by similar way as in the 
point to line distance algorithm – we subtract them from x 
and y in each branch above the line. (And we will optimise 
it further.) 

162 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



Optimisation step 3 

To keep track, we repeat all lines of the code. The 
changes outlined above relate to the content of rows: 03, 
05, 07, 09, 11, 12, 14, 15, and 16. 

Optimisation step 4 

In this step, we will extract the px and py subtractions 
from all branches and place them in front of them. This 
modification changes each assign operation inside the 
branches from the simple assignment (=) to the enhanced 
addition assignment (+=). 

The extracted px and py will be at line 04. We must sub-
tract them from x and y so that the line will look like this: 

After changes at line 05 from previous optimisation step 
the line would look like this: 

So, the whole branch became needless. 
Changes on the previous version of line 09 would modify 

it into this form: 

So, this sub-branch became needless, too. Next change 
is at lines 11 and 12 of the previous version. They will be 
merged into this form: 

Last change is at lines 14 and 15 of the last version, 
which will afterwards look like this: 

The final version of the optimised algorithm follows: 

// (This is the original else branch, so the

// condition is negated.) 

// (The original if u < 0 branch had disap-

peared,

// so here must be another condition.) 

  
Like before we measured 50 time values of two million 

runs of each algorithm. The medians are in table 2. The 
meanings of all symbols in the table are as follows: 

{Asg} – the Java build 1.8.0_241-b07 implementation. 
{Bsg} – the algorithm taken from [13]. 
{Csg} – the optimised version of the {Bsg} algorithm. 
{Dsg} – the algorithm taken from [14]. 
{Esg} – the algorithm taken from [15]. 
 – the median of the measured time values in millisec-

onds. 
No algorithm produced NaNs in this batch. 

Table 2. The data sets for the algorithm of point to line seg-
ment distance (squared) – the second batch. 

run  {Asg} {Bsg} {Csg} {Dsg} {Esg} 

1 30101.5 0.95 0.2 29755.55 28147.4 

2 29215.2 0.8 0.3 28669 27864.6 

3 30492.75 0.9 0.2 29911.9 28061.75 

4 22175.65 0.6 0.1 22073.35 21607.45 

5 22240.6 0.6 0.1 21911.85 21689.5 

  
Next, we used statistical methods to compare the data 

sets whose medians differ in magnitudes of order. The goal 
was to show that there is a significant difference in time. 

V. TESTING THE TIME PERFORMANCE OF THE 

ALGORITHMS 

To approve (or disprove) the normality of the data, we 
used the Shapiro–Wilk test [16]. Since the p-value < α for 
most sets, we reject the H₀ for them. That means that the 
data was not normally distributed. In other words, the dif-
ference between the data sets and the normal distribution 
was big enough to be statistically significant – using the 
Shapiro–Wilk test. We rejected the normal distribution of 
the data for the most data sets; therefore, we used the 
Mann–Whitney U nonparametric test in further analysis. 

We used the calculated median values (in tables 1 and 2) 
to eliminate the nonsensical comparisons. Mann–Whitney 
U (nonparametric) test is meaningful only for such compar-
isons of data sets whose difference of medians is small 
(comparable within the order of magnitude). As we can see 
in the tables (1 and 2), the comparison is meaningful only 
for these pairs of data sets: {Bln} – {Cln}; {Eln} – {Cln}; 
and {Bsg} – {Csg}. 

Table 3. The results of Mann–Whitney U nonparametric test 
for the meaningful comparisons of data sets (as described in 

the text). 

# {Bln} – {Cln} {Eln} – {Cln} {Bsg} – {Csg} 

1 u = 6.630 u = 5.141 u = 8.154 

2 u = 7.551 u = 7.574 u = 7.991 

3 u = 7.553 u = 7.571 u = 7.488 

4 u = 7.524 u = 7.517 u = 7.849 

5 u = 7.718 u = 7.731 u = 7.540 

 

163 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



Table 3 shows the values of u that should be ≤ 1.96 for 
comparable (insignificantly different) data. Since u > 1.96 
for all comparison, we reject the H₀ for all of them. That 
means that there is a significant difference in time between 
the data sets in all comparisons shown in table 3. 

In the second batch (the point to line segment distance) 
only the {Bsg} – {Csg} data sets were compared (since the 
medians of times in all other cases were several magnitudes 
of order bigger). The result simply confirms that the opti-
misation was meaningful. 

  
Based on the results we have obtained, we will use the 

{Cln} and {Csg} algorithms in our framework. The full 
Java code of both algorithms is available at [17] – see pri-
vate methods ptLineDistSq and ptSegDistSq around lines 
25,610 and 25,660 (the line numbers might not be exact, 
since the framework might be updated over time). We will 
also report this matter to Oracle, as we have had a positive 
experience with the error/bug/problem reporting in the past. 

  
The optimisation processes and their description might 

be good example usable in the educational process. The 
topic of algorithm optimisation is not practically included 
in the study programmes at our faculty (practically, because 
according to the plans it should be taught, but mostly this is 
not possible for time reasons), but we can recommend this 
paper to the students for self-study and also maybe other 
colleagues may use this example in their educational pro-
cess. 

VI. THE SIMULATION IMPLEMENTATION 

The first phase was simple and straightforward – it im-
plemented a person’s initialisation (according to the ranges 
of attributes determined by the constants), produced the de-
sired number of “people” and started the simulation. 

 

Figure 1. Moving particles on the canvas in the first imple-
mentation phase of the simulation. 

The main action-driving elements of the simulation are 
the methods dealing with changes of a person’s condition 
(the activity reaction in the Person class) and ensuring the 
contact of persons including the transmission of the disease 
(infection; the contact method in the Person class which is 
called in the tick method of the Main class). After finishing 

this phase, the dots start to move. Their colours indicate 
their states. (See figure 1.) 

The simulation can be restarted by clicking the mouse. 
  
In the second phase, we added the possibility of monitor-

ing and drawing statistics (that is: storing the number of 
people who are in a particular state at a particular moment 
in time and drawing the collected data in the form of 
a stacked area graph [18]). 

The horizontal axis of the graph (x) is time, and the ver-
tical axis (y) reflect the persons’ state ratio. The graph rolls 
to the left forever after reaching the right corner of the 
screen. Currently, there is no option to roll back the data 
rolled out to the left (so the data is lost but given the purpose 
of the simulation we consider this as no problem). 

After several runs of the simulation, we find that shortly 
after the stabilisation of the system, the data becomes mo-
notonous and uninteresting. (The visual side of the applica-
tion did not change further. See figure 2.) 

  
In the third phase, we added one important feature – we 

allowed the person to stay at home, that means that we lim-
ited the mobility of people (and thus the spread of the dis-
ease). 

This phase also included the transformation of the status 
attribute from an integer to an enumerated data type. It was 
not crucial for the simulation; it was just didactical mean to 
emphasise maintaining good habits in correct data repre-
sentation and to show the effort needed to fix the bad initial 
design of the program structure. (In this case, the effort is 
not high, but we will emphasise to the students that the later 
a flaw is detected and the worse the design error is, the 
harder and more expensive is the fix.) 

In the source code provided to the students, the time 
spent at home was set zero. Students should test the follow-
ing result: If the values of home1 and home2 remained zero, 
the results of the simulation would be precisely the same as 
in the previous phase. Then they should change the time, 
rerun the simulation and compare the results. 

  

 

Figure 2. Moving particles over the stacked area graph in the 
fourth implementation phase of the simulation. 

164 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



In the last phase, we worked on interactive adjusting the 
simulation parameters and automatic save/load of the con-
figuration (so that we do not have to restart the application 
all the time). 

Graphs on figure 3 to figure 5 show the various situa-
tions that our illustrative but straightforward simulation has 
shown. We can compare situations where people have no 
movement restrictions on situations where these measures 
are gradually introduced. If we look at the graph showing 
high restriction of movement (figure 5) as we witnessed in 
spring ’20 in Slovakia, we will see that the grey area is com-
pletely missing (this is the area of the “deceased particles”). 
It was for us a somewhat surprising result, given that noth-
ing that should significantly help to get there was explicitly 
included in the simulation – no additional increase in the 
resilience of persons based on their staying at home, or an-
ything like that. It emanated from the simulation naturally. 

 

Figure 3. Graph showing changes in persons’ status ratios over 
time when setting up no time of staying at home. 

 

Figure 4. Graph showing changes in persons’ status ratios over 
time when setting up a short time of staying at home. 

 

Figure 5. Graph showing changes in persons’ status ratios over 
time when setting up a long time of staying at home. 

Although this simulation is primarily intended to serve 
as an example in class (the simulation parameters are not 
perfectly tuned to COVID-19), it shows certain behaviour – 
we think that this shows off the effectiveness of this regu-
lation quite well (if people follow it). We expected some 
small number of deceased even when the persons stay at 
home, but definitely not zero. 

Some open issues (as homework for the students): 

• the capacity of medical facilities (number of beds); 
• dynamic scalability of the simulation – total number 

of persons and beds, configurable board size – that is, 
the size of the area on which persons would move (as 
this can affect the overall result too), and similar; 

• alternatively, other possibly important aspects, such as 
the possibility of dividing the persons into some com-
munities, the possibility of defining centres where the 
people can (or must) meet (like shops, medical facili-
ties, and similar). 

VII. CONCLUSION 

In conclusion, we can state that testing the behaviour and 
functionality of the didactic simulation as well as the series 
of tests verifying the time efficiency of the optimised algo-
rithms described in this paper proved the success of our ef-
forts. We included the optimised algorithms in our pro-
gramming framework, and the didactic simulation will be-
come a part of the teaching content of the MSS subject that 
is part of the CS teacher’s study programme at our faculty. 

ACKNOWLEDGEMENT 

The work has been supported by the Cultural and Educa-
tional Grant Agency of the Ministry of Education, Science, 
Research and Sport of the Slovak Republic (KEGA) and 
the contribution was elaborated as the part of the KEGA 
project KEGA 001UMB-4/2020 entitled Implementation of 
Blended Learning into Preparation of Future Mathematics 
Teachers and Future Computer Science Teachers and 
KEGA 003TTU-4/2018 entitled Interactive Applications 
for Teaching Mathematics at Primary Schools. 

REFERENCES 
[1] Smith, David – Moore, Lang. “The SIR Model for Spread of Dis-

ease – The Differential Equation Model.” In Convergence, 2004. 
Available at: https://www.maa.org/press/periodicals/loci/joma/
the-sir-model-for-spread-of-disease-the-differential-equation-
-model . Last accessed: 2020-09-15. 

[2] “SIR and SIRS models.” Generic Model documentation. Bill & 
Melinda Gates Foundation. Available at: https://idmod.org/docs/
emod/generic/model-sir.html . Last accessed: 2020-09-15. 

[3] Weisstein, Eric W. “SIR Model.” From MathWorld – A Wolfram 
Web Resource. Available at: https://mathworld.wolfram.com/SIR-
Model.html . Last accessed: 2020-09-15. 

[4] Sanderson, Grant. “Simulating an epidemic.” At YouTube, 
3Blue1Brown, 27. 3. 2020. Available at: https://youtu.be/gxAaO2
rsdIs . Last accessed: 2020-09-15. 

[5] Kölling, Michael. “Java programming with Greenfoot (a simula-
tion of the spread of a virus in a population series).” At YouTube, 
Channel Greenfoot, King’s College London, 18. 4. 2020. Available 
at: https://www.youtube.com/playlist?list=PLIWb-FtdAhJjNgdIl
jwkMEQMhwhVIiV63 . Last accessed: 2020-09-15. 

[6] “SEIR and SEIRS models.” Generic Model documentation. Bill & 
Melinda Gates Foundation. Available at: https://idmod.org/docs/
emod/generic/model-seir.html . Last accessed: 2020-09-16. 

[7] Horváth, Roman. “Vírus.” Trnava : Faculty of Education of Trnava 
University in Trnava, 5. 4. 2020. Available at: https://pdf.truni.sk/
horvath/materialy?virus . Last accessed: 2020-09-15. 

[8] Horváth, Roman. “Dokumentácia programovacieho rámca GRo-
bot.” Trnava : Faculty of Education of Trnava University in Trnava, 
2020. Available at: https://pdf.truni.sk/horvath/GRobot/ . Last ac-
cessed: 2020-09-17. 

[9] Horváth, Roman. “Programming framework GRobot.” At GitHub, 
2020. Available at: https://github.com/raubirius/GRobot . Last ac-
cessed: 2020-09-17. 

[10] Horváth, Roman. “The Past Seven Years of Development of the 
Framework for Teaching Programming and the Students’ Results.” 
In ICETA 2018. Danvers : IEEE, 2018. ISBN 978-1-5386-7912-8, 
pp. 185–189. 

[11] Horváth, Roman – Javorský, Stanislav. “New Teaching Model for 
Java Programming Subjects.” In Procedia – Social and Behavioral 
Sciences. ISSN 1877-0428. No. 116(2014), pp. 5188–5193. 

[12] Stoffová, Veronika – Horváth, Roman. “Didactic computer games 
in teaching and learning process.” In eLSE 2017. Bucharest : Carol 

165 978-0-7381-2367-7/20/$31.00 ©2020 IEEE



I National Defence University Publishing House, 2017. ISSN 2066-
-026X, pp. 310–319. 

[13] Tromey, Tom – Blake, Eric – Gilbert, David. “Source for 
java.awt.geom.Line2D.” GNU Classpath 0.95 Documentation. 
2000, 2001, 2002. Available at: http://developer.classpath.org/doc/
java/awt/geom/Line2D-source.html . Last accessed: 2020-09-15. 

[14] Graham, Jim. “Java example source code file (Line2D.java).” 
From Java examples. Available at: https://alvinalexander.com/
java/jwarehouse/openjdk-8/jdk/src/share/classes/java/awt/geom/
Line2D.java.shtml . Last accessed: 2020-09-15. 

[15] Kishenko, Denis M. “awt/java/awt/geom/Line2D.java – platform/
frameworks/native.” From Git at Google, The Android Open 
Source Project, 2008. Available at: https://android.googlesource.

com/platform/frameworks/native/+/e09fd9e/awt/java/awt/geom/
Line2D.java . Last accessed: 2020-09-15. 

[16] “Shapiro–Wilk Calculator.” Statistics Kingdom. Available at: 
https://www.statskingdom.com/320ShapiroWilk.html . Last ac-

cessed: 2020-09-24. 
[17] Horváth, Roman. “Raw listing of the GRobot’s knižnica/Svet.java 

file.” At GitHub, 2020. Available at: https://raw.githubusercon-
tent.com/raubirius/GRobot/master/kni%C5%BEnica/Svet.java . 
Last accessed: 2020-09-17. 

[18] Lile, Samantha. “44 Types of Graphs and How to Choose the Best 
One for Your Data.” From Visime.co, 2017. Available at: https://
visme.co/blog/types-of-graphs/ . Last accessed: 2020-09-18. 

 
 

166 978-0-7381-2367-7/20/$31.00 ©2020 IEEE


