A NOTE ON RANDOMLY REGULAR GRAPHS

PAVEL HÍČ, MILAN POKORNÝ

Trnava, Trnava University, Faculty of Education

Abstract: The graph G is said to be a randomly H graph if and only if any subgraph of G without isolated vertices, which is isomorphic to a subgraph of H, can be extended to a subgraph F of G such that F is isomorphic to H. In this paper the problem about randomly H graphs is discussed, where H is a connected regular graph.

Key words: Randomly H graph, regular graph.

AMS Subject Classification (1991): Primary 05C75

INTRODUCTION

In 1951 Ore [13] studied arbitrarily traceable graphs which were later referred to as randomly eulerian graphs. This concept was later extended by Chartrand and White [5] and Erickson [8]. Chartrand and Kronk [2] in 1968 introduced the concept of randomly hamitonian graphs. There were also characterized these graphs. The analogical questions have been studied in [4], [6], [7], [14].

In 1986 Chartrand, Oellerman and Ruiz [3] generalized these concepts and introduced the term randomly H graph as follows: Let G be a graph containing a subgraph H without isolated
vertices. Then G is called a randomly H graph if whenever F is a subgraph of G without isolated vertices that is isomorphic to a subgraph of H, then F can be extended to a subgraph H1 of G such that H1 is isomorphic to H. Thus, every nonempty graph is randomly K2 graph while every graph G without isolated vertices is a randomly G graph. The graph K4,4 in Figure 1 is not randomly C6, since the subgraph F1 of K4,4 cannot be extended to a subgraph of K4,4 isomorphic to C6.

The graph K3,3 is randomly H for every subgraph H of K3,3 (see [3]). In order to avoid a situation where only a complete graph would be randomly H, require in the definition of randomly H graph that H and F be without isolated vertices (see also [3]). In [11] a characterization of randomly Km,n graphs is given (H-closed graph is there used for the term randomly H graph). In [1], [10], [12] randomly complete n-partite graphs were studied and characterized.

RANDOMLY REGULAR GRAPHS

In [15] the problem of characterization of randomly Hr graphs (H-closed graph is there used for the term randomly H graph) on p vertices was given, where Hr is a connected p-vertex r regular graphs. The characterization of randomly Hr graphs in general seems to be difficult. But there exist several results for some special values of r, p, n.

In [15] the following theorem is proved:

THEOREM 1. ([15; Theorem 1]) Let G be n -vertex graph and Hr be connected p-vertex regular graph of degree r≥2, different from K3 and C4. Then G is randomly Hr graph if and only if G=Kn , for n >p.
In [14] the characterization of randomly \(H_{2p}^1 \) graphs (but in terms randomly matchable graphs) was given.

THEOREM 2. (see Sumner [15]). Graph \(G \) is randomly \(H_{2p}^1 \) graph if and only if \(G \) is \(K_{2p} \) or \(K_{p,p} \) or \(H_{2p}^1 \).

Chartrand, Oellerman and Ruiz in [3] the following theorem proved:

THEOREM 3. (see [3]). If \(H^2_p \) is a cycle on \(p \) vertices for \(p \geq 5 \), then randomly \(H^2_p \) graphs are \(K_n \) or \(H^2_p \) if \(p \) is odd and \(K^r_{p,p} \) or \(K^r_{p,p} \) if \(p \) is even \((n \geq p) \).

In [15] also the following criterion for randomly graphs is given:

THEOREM 4. (see [15; Lemma 2]). Graph \(G \) is randomly \(H \) graph if and only if for every minimal system \(S = \{x_1, x_2, \ldots, x_k\} \) of boolean variables for which the boolean expression

\[
W = \prod_{H \subseteq G} \left(\sum_{e \in E(G) - E(H)} x_e \right)
\]

is true, \(F_s \not\subset H \), where \(F_s \) is the graph consisting of the edges \(\{e_1, e_2, \ldots, e_k\} \) corresponding to the boolean variables in \(S \).

This criterion works very good if \(G \) has not much more edges than \(H \).

Some results concerning to randomly \(H^r_p \) graphs on \(p \) vertices for \(r \geq 3 \) are given in this paper. We use the general notation and terminology of Harary [9]. It is followed from Theorems 2 and 3 that all known nontrivial randomly \(H^r_p \) graphs up to the present time are only bipartite graphs. Bipartite graphs have very significant part in study of randomly regular graphs. This fact is confirmed by Theorems 2 and 3 and it follows also from theorems bellow.

THEOREM 5. Let \(H^r_{2p} \) be a connected \(2p \)-vertex \(r \) regular graph and \(K_{p,p} \subset H^r_{2p} \). Let \(G \) be a randomly \(H^r_{2p} \) graph, then \(G = H^r_{2p} \) or \(G = K_{2p} \).

Proof. If \(r = p \), then theorem follows from [11; Theorem 3]. Now, let \(r > p \), and \(G \) be a randomly \(H^r_{2p} \) graph. If \(G \neq H^r_{2p} \) then there exists a subgraph \(H \) of \(G \) which is isomorphic to \(H^r_{2p} \). Because of \(K_{p,p} \subset H^r_{2p} \), the vertex set of \(G \), \(V(G) = A \cup B \), where \(A = \{v_1, v_2, \ldots, v_p\} \), \(B = \{u_1, u_2, \ldots, u_p\} \) and \((v_i, u_j) \in E(G)\) for \(i = 1, 2, ..., p; j = 1, 2, ..., p \). From \(r > p \) it follows, that there exist edges between vertices of \(A \) (\(B \) respectively). Now, let \(e \in E(G) - E(H) \) and \(e = (u_i, u_j) \). Form a graph \(F \) as follows:
\[\text{THEOREM 6.} \quad \text{Let } G = K_{p,p} - M_{p,p}, \text{ where } M_{p,p} \text{ be a matching on } 2p \text{ vertices. Then } K_{p,p} \text{ is randomly } G \text{ graph.} \]

Proof. We use the criterion from Theorem 4. The graph \(K_{p,p} \) contains exactly \(p! \) graphs \(H \) because of, there are \(p! \) matchings \(M_{p,p} \) on \(2p \) vertices. Thus the boolean expression \(W \) has the following form:

\[
W = \prod_{P \in P} \left(x_{1,i_1} + x_{2,i_2} + \ldots + x_{p,i_p} \right),
\]

where the product \(\prod \) is done over all permutations of set \(\{1, 2, \ldots, p\} \). If the boolean expression is true, the \(F_S \) must contain at least one edge from every matching. Now, if \(F_S \subset H \), then there exists matching \(\{ e_{1,j}, e_{2,j}, \ldots, e_{p,j} \} = E(K_{p,p}) - E(H) \) such that \(F_s \cap \{ e_{1,j}, e_{2,j}, \ldots, e_{p,j} \} = \emptyset \). This is the contradiction to the fact that \(W \) is true.

From Theorems 2, 3 and 6 it follows that \(K_{p,p} \) is randomly \(H_{2p}^r \) graph, for \(r=1, 2 \) and \(p-1 \). For \(r \geq 3 \) and \(r \neq p-1 \) the graph \(K_{p,p} \) must not be randomly \(H_{2p}^r \) graph. For example, if \(p=6 \), the graph \(H \) in Figure 2 is 3-regular 12-vertex subgraph of \(K_{6,6} \), but the graph \(K_{6,6} \) is not the randomly \(H \) graph, since the subgraph \(F_1 \) of \(K_{6,6} \) that is isomorphic to a subgraph of \(H \) cannot be extended to a subgraph of \(K_{6,6} \) isomorphic to \(H \).

NOTE: Using \((v, k, \lambda) \) designs, for every \(r \geq 3 \) there exists \(p \) such that we can construct \(r \)-regular \(2p \)-vertex graph \(H \), for which \(K_{p,p} \) is not the randomly \(H \) graph.

COROLLARY. Graph \(K_{p,p} \) for \(p = 1, 2, 3, 4 \) is randomly \(H \) regular graph for every its connected regular subgraph \(H \).

Proof. It is easy to verify this assertion for \(K_{1,1}, K_{2,2} \) and \(K_{3,3} \). The graph \(K_{4,4} \) has a following connected regular subgraph: matching \(M_{4,4} \), cycle \(C \) and \(H = K_{4,4} - M_{4,4} \). The proof follows from Theorems 2, 3 and 6.
REFERENCES