REMARKS ON THE MEASURE DENSITY AND THE MAPPINGS ON THE SET OF POSITIVE INTEGERS

Milan Paštéka
Pedagogická fakulta Trnavskéj Univerzity
Priemyselná 4, P.O. BOX 4, Sk-914 43, Trnava,SR
e-mail: pasteka@mat.savba.sk

SUMMARY. In the first part we study the mappings which preserve zero asymptotic density and we give a characterization of the sets of zero asymptotic density in the terms of bijections. The object of observations in the second and third part is the uniform density

Let \(\mathbb{N} \) be the set of natural numbers. For any subset \(A \subseteq \mathbb{N} \) and \(x > 0 \), let \(A(x) \) be the cardinality of \(A \cap [0,x) \). The value \(\lim \sup_x x^{-1} A(x) := \overline{d}(A) \) is called the upper asymptotic density of \(A \), the value \(\lim \inf_x x^{-1} A(x) := \underline{d}(A) \) is called the lower asymptotic density of \(A \). If \(\overline{d}(A) = \underline{d}(A) \) then we say that \(A \) has an asymptotic density and the value \(\overline{d}(A) = \underline{d}(A) \) is called the asymptotic density of the set \(A \). It is easy to see that this if and only if the limit \(\lim \frac{A(x)}{x} := d(A) (= \overline{d}(A) = \underline{d}(A)) \) exists. For more details on the asymptotic density we refer to the paper [G].

Lemma 1. Suppose that \(\mathcal{A} \subseteq \mathbb{N} \) is an infinite and \(f : \mathcal{A} \to \mathbb{N} \) is such a mapping that

\[
\liminf_{\mathcal{A}} f(n) > 0.
\]

Then for every \(S \subseteq \mathcal{A} \) it holds

\[
d(S) = 0 \Rightarrow d(f(S)) = 0.
\]

Proof: The inequality (1) implies that for some \(\alpha > 0 \) we have \(n \cdot \alpha < f(n), n \in \mathcal{A} \). This implies that for \(x > 0 \) we have \(f(n) \leq x \) yields \(n \cdot \alpha < x \). Thus for \(S \subseteq \mathcal{A} \) we get \(f(S)(x) \leq S(\frac{x}{\alpha}) \). From this we immediately obtain (2). \(\square \)

If \(f : \mathbb{N} \to \mathbb{N} \) fulfills the condition (2) for every set \(S \subseteq \mathbb{N} \) we say that \(f \) preserves the zero density.

For every set \(S \subseteq \mathbb{N} \) it holds that \(d(S) = 0 \) if and only if \(d(\mathbb{N} \setminus S) = 1 \). From this we obtain immediately:

Lemma 2. Let \(f : \mathbb{N} \to \mathbb{N} \) be a permutation. Then \(f \) preserves the zero density if and only if for every \(R \subseteq \mathbb{N} \) it holds

\[
d(R) = 1 \Rightarrow d(f(R)) = 1.
\]
Theorem 1. Let \(g : \mathbb{N} \to \mathbb{N} \) be such a permutation that there exists a set \(\mathcal{A} \subset \mathbb{N} \),
\(d(\mathcal{A}) = 1 = d(g(\mathcal{A})) \), and for every infinite \(S \subset \mathcal{A} \),
\(d(S) = 0 \), we have

\[
(4) \quad \liminf_{S} \frac{g(n)}{n} > 0.
\]

Then \(g \) preserves the zero density.

Proof. Let \(R \subset \mathbb{N} \) and \(d(R) = 1 \). Then \(d(R \cap \mathcal{A}) = 1 \). Thus \(d(\mathbb{N} \setminus R \cap \mathcal{A}) = 0 \). From (4) and Lemma 1 we get \(d(g(\mathbb{N} \setminus R \cap \mathcal{A})) = 0 \). This yields \(d(g(R \cap \mathcal{A})) = 1 \), thus \(d(g(R)) = 1 \). The assertion follows from Lemma 2. \(\square \)

Example. Let \(\mathbb{N} \setminus \{n^2, n \in \mathbb{N}\} = A \cup B \) and \(\mathbb{N} \setminus \{n^3, n \in \mathbb{N}\} = C \cup D \), where \(A = \{a_1 < a_2 < \ldots \} \), \(B = \{b_1 < b_2 < \ldots \} \), \(C = \{c_1 < c_2 < \ldots \} \), \(D = \{d_1 < d_2 < \ldots \} \).
Moreover \(A \cap B = 0 = C \cap D \). Let us consider the permutation \(g : \mathbb{N} \to \mathbb{N} \) where
\(g(n^2) = n^3, n \in \mathbb{N} \) and \(g(a_k) = c_k, g(b_k) = d_k \). If we suppose that the sets \(A, B, C, D \)
have positive asymptotic density, then \(g \) fulfills the assumption of Theorem 1. If \(d(A) \neq d(C) \) then \(g \) preserves the zero density but does not preserve the asymptotic density.

Theorem 2. Let \(g : \mathbb{N} \to \mathbb{N} \) be an injective mapping and \(\mathcal{A} \subset \mathbb{N} \), \(\mathcal{A} = \{a_1 < a_2 < \ldots \} \) an infinite set.

a) If

\[
(5) \quad \lim_{n \to \infty} \frac{1}{a_n} \max\{g(a_j), j = 1, \ldots, n\} = 0
\]

then \(d(A) = 0 \).

b) If

\[
(6) \quad \lim_{n \to \infty} \frac{g(a_n)}{a_n} = 0
\]

then \(d(A) = 0 \).

Proof. a) The values \(g(a_j), j = 1, \ldots, n \) are different positive integers and so their maximum must be greater than \(n - 1 \). This implies

\[
\frac{n}{a_n} \leq \frac{1}{a_n} \max\{g(a_j), j = 1, \ldots, n\}.
\]

Now (5) implies \(d(A) = 0 \).

b) Put \(a_{k_n} \) such that \(g(a_{k_n}) = \max\{g(a_j), j = 1, \ldots, n\}, n = 1, 2, \ldots \) Then

\[
\frac{g(a_{k_n})}{a_n} \leq \frac{g(a_{k_n})}{a_{k_n}}
\]

because \(a_{k_n} \leq a_n \). The set \(\{g(a_{n}), n = 1, 2, \ldots \} \) infinite and so \(k_n \to \infty \) as \(n \to \infty \).
Therefore (6) implies (5). \(\square \)

As a corollary of Theorem 2 we obtain the following characterization of the sets of zero density in the terms of permutations.

Corollary. Let \(\mathcal{A} \subset \mathbb{N} \), \(\mathcal{A} = \{a_1 < a_2 < \ldots \} \) be an infinite set. Then \(d(A) = 0 \) if and only if there exists a permutation \(g : \mathbb{N} \to \mathbb{N} \) fulfilling (6).

Proof. The sufficiency follows from Theorem 2. If \(d(A) = 0 \) then \(a_{k_n} \to 0 \) for \(n \to \infty \). Put \(B = \mathbb{N} \setminus \mathcal{A} = \{b_n, n = 1, 2, \ldots \} \). The permutation \(g \) given by
\(g(a_n) = 2n, g(b_n) = 2n + 1 \), fulfills (6). \(\square \)
Uniform density

Let $x < y$ be two positive real number, put $A(x, y) := A(y) - A(x)$, thus this value gives us the number of elements of A between x, y.

Denote $\alpha_k(A) = \max_k A(k, k + s), \alpha_s(A) = \min_k A(k, k + s)$. It is well known that there exist the limits $\lim_{s \to 1} \frac{1}{s} \alpha_s(A) := \overline{\nu}(A)$ and $\lim_{s \to 1} \frac{1}{s} \alpha_s(A) := \underline{\nu}(A)$. The value $\overline{\nu}(A)$ is called the upper uniform density of A and the value $\underline{\nu}(A)$ is called the lower uniform density of A. The definition implies:

i) If $A \subset \mathbb{N}$ and the set A contains the blocks of consecutive numbers of arbitrary length then $\overline{\nu}(A) = 1$.

Let us denote $\nu(B) = \sum_{n \in B} \frac{1}{n}$, where the union is considered through all prime numbers.

ii) If $A \subset \mathbb{N}$ and the set $\mathbb{N} \setminus A$ contains the blocks of consecutive numbers of arbitrary length then $\underline{\nu}(A) = 0$.

Theorem 1. Let A, B be two infinite subsets of \mathbb{N} such that A contains the blocks of consecutive elements from B of arbitrary length. Then $\overline{\nu}(A) \geq \nu(B)$.

Proof: The assumptions yield that for arbitrary n it is such k that $A(k, k + n) \geq B(k, k + n)$, thus max $A(k, k + n) \geq \min B(k, k + n)$ and the assertion follows. □

If for $A \subset \mathbb{N}$ it holds $\underline{\nu}(A) = \nu(A) := u(A)$ then we say that A has uniform density, and the value $u(A)$ is called the uniform density of A.

Let $A = \{a_1 < a_2 < \ldots\}$ be an infinite set. It is well known fact that if $\sum_{n} a_n^{-1} < \infty$ then A has the asymptotic density and $d(A) = 0$. Now we give an example that this does not hold for the uniform density. Consider the set $A = \{n! + 1, \ldots, n! + n\}$. From i) we see that $\overline{\nu}(A) = 1$ but it is easy to prove that in this case $\sum_{n} a_n^{-1} < \infty$.

Theorem 2. Let $\{m_n\}$ be a sequence of positive integers, such that $(m_j, m_k) = 1$ for $k \neq j$. Put $A = \cup_{n=1}^\infty m_n \mathbb{N}$. Then

1. $\overline{\nu}(A) = 1$
2. $\underline{\nu}(A) = 1 - \prod_{n=1}^\infty (1 - \frac{1}{m_n})$.

Proof: (1). The numbers m_1, \ldots, m_n are relatively prime, thus due to the Chinese reminder theorem we obtain that there exists such a positive integer x_n that $x_n \equiv -j \pmod{m_j}$ for $j = 1, \ldots, n$. Therefore $x_n + j \in m_j \mathbb{N}$, $j = 1, \ldots, n$. This yields $x_n + 1, \ldots, x_n + n \in A$ and from i) we obtain $\overline{\nu}(A) = 1$.

(2). Put $A_n = \cup_{j=1}^n m_j \mathbb{N}$. Clearly $A_n \subset A$. It can be easily proved $u(A_n) = 1 - \prod_{j=1}^n (1 - \frac{1}{m_j})$ and so for $n \to \infty$ we obtain $1 - \prod_{n=1}^\infty (1 - \frac{1}{m_n}) \leq \nu(A)$. Other inequality we obtain from the fact that $d(A) = 1 - \prod_{n=1}^\infty (1 - \frac{1}{m_n})$. □

Denote by Q_n, for $n = 2, 3, \ldots$ the set of positive integers which are not divisible by the n-th power of prime number. Denote by \mathcal{P} the set of all prime numbers. Then it holds $N \setminus Q_n = \cup_{p \in \mathcal{P}^{n}} p^n \mathbb{N}$, where the union is considered through all prime numbers p. Thus $\overline{\nu}(N \setminus Q_n) = 1 - \prod_{p \in \mathcal{P}} (1 - p^{-n}) > 0$ and so from ii) it follows that Q_n does not contains the blocks of consecutive integers of arbitrary length.

Now we shall study one type of arithmetic functions from point of view of the uniform density of their range.

Lemma 1. Let $f : \mathbb{N} \to \mathbb{N}$ be an arithmetic function fulfilling the condition

(a) $\liminf_{n \to \infty} \frac{f(n+k) - f(k)}{n} > 0$ uniformly for $k = 1, 2, \ldots$.

Then for every \(A \subseteq \mathbb{N} \), \(u(A) = 0 \) it holds \(u(f(A)) = 0 \).

Proof: The condition (a) implies that for suitable \(\beta > 0, n_0 \in \mathbb{N} \) we have
\[
(1) \quad f(n + k) - f(k) \geq \beta n, \quad n \geq n_0, \quad k = 1, 2, \ldots
\]
Thus the set \(F := f(\mathbb{N}) \) can be represented in the form \(F = F^{(1)} \cup \cdots \cup F^{(n_0)} \) where
\[
F^{(i)} = \{ f(i) < f(i + n_0) < \cdots < f(i + m n_0) < \cdots \},
\]
for \(i = 1, \ldots, n_0 \). Let us denote \(E^{(i)} = F^{(i)} \cap f(A) \). Thus \(E^{(i)} = \{ f(i + m n_0); i + m n_0 \in A, m \in \mathbb{N} \}, i = 1, \ldots, n_0 \). Clearly \(f(A) \subseteq E^{(1)} \cup \cdots \cup E^{(n_0)} \), therefore it suffices to prove \(u(E^{(i)}) = 0 \), \(i = 1, \ldots, n_0 \).

Let \(k, n \in \mathbb{N} \) and
\[
f(i + m_1 n_0), \ldots, f(i + m_s n_0) \in [k, k + n]
\]
for \(m_1 < m_2 < \ldots m_s, m_j \in \mathbb{N}, i + m_j n_0 \in A, j = 1, \ldots, s \). Then
\[
f(i + m_s n_0) - f(i + m_1 n_0) \leq n.
\]
From the other side the inequality (1) implies
\[
f(i + m_s n_0) - f(i + m_1 n_0) \geq \beta(m_s - m_1)n_0.
\]
This yields \(\beta(m_s - m_1)n_0 \leq n \) and so \(m_s \leq m_1 + \frac{n}{\beta n_0} \). The numbers \(i + m_j n_0, j = 1, \ldots, s \) belong to the interval \([r, r + \frac{n}{\beta}] \), where \(r = i + m_1 n_0 \). We get \(s \leq A(r, r + n) \), in the other words
\[
E^{(i)}(k, k + n) \leq A(r, r + \frac{n}{\beta}),
\]
thus \(u(E^{(i)}) = 0 \). \(\Box \)

Now we recall a well known property of uniform density. Denote for a prime number \(p \) and \(A \subseteq \mathbb{N} \) by \(A_p \) the set of these elements of \(A \) which are divisible by \(p \) and not divisible by \(p^2 \).

In [P] it is proved the following statement: Let \(P \) be such set of primes that \(\sum p^{-1} = \infty \). Then for \(A \subseteq \mathbb{N} \) it holds
\[
(3) \quad (\forall p \in P; u(A_p) = 0) \Rightarrow u(A) = 0.
\]

Lemma 2. Let \(P \) be such set of primes that \(\sum p^{-1} = \infty \). Denote for \(r = 1, 2, \ldots \) by \(N(r) \) the set of all positive integers which have at most \(r \) distinct prime divisors from \(P \). Then \(u(N(r)) = 0, r = 1, 2, \ldots \).

Proof: By induction with respect to \(r \). Clearly \(u(N(0)) = 0 \), for \(p \in P \), thus (3) yields \(u(N(0)) = 0 \).

It is easy to see that \(N(r + 1)_p \subseteq p N(r) \), thus from (3) we obtain \(u(N(r)) = 0 \) \(\Rightarrow \)
\(u(N(r + 1)) = 0, r = 1, 2, \ldots \). \(\Box \)

Theorem 3. Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be an arithmetic function fulfilling the condition (a) from Lemma 1. Let \(P \) be such set of primes that \(\sum p^{-1} = \infty \). Denote by \(\omega(n) \) the number of distinct prime divisors from \(P \) of \(n, n \in \mathbb{N} \). Let \(f \) fulfills moreover the condition
\[
(b) \quad \text{There exists } a \in \mathbb{N}, a > 1 \text{ such that } a^g(\omega(n))|f(n) \text{ for } n \in \mathbb{N}. \quad \text{Where } g : \mathbb{N} \rightarrow \mathbb{N} \text{ is a function that } g(n) \rightarrow \infty \text{ for } n \rightarrow \infty.
\]

Then \(u(F) = 0 \), where \(F = \{ f(n), n \in \mathbb{N} \} \).

Proof: Let \(s \in \mathbb{N} \). The set \(F \) can be decomposed to \(F = F_1 \cup F_2 \), where \(F_1 = \{ f(j); j \in \mathbb{N}, \omega^s(f(j)) \} \) and \(F_2 = F \setminus F_1 \). Clearly \(\overline{\mathbb{N}}(F_1) \leq a^{-s} \). We prove \(u(F_2) = 0 \). The condition (b) yields that there exists a nonnegative integer \(r \) that \(F_2 \subseteq f(\mathbb{N}(r)) \), where \(\mathbb{N}(r) \) is the set from Lemma 2. Thus Lemma 1 implies \(u(F_2) = 0 \). Therefore \(\overline{\mathbb{N}}(F) \leq a^{-s} \) and for \(s \rightarrow \infty \) we obtain \(u(F) = 0 \). \(\Box \)
Transformations which preserve the uniform density

We conclude this note by one sufficient condition under which an injective mapping preserves the uniform density.

Theorem 1. Let \(g : \mathbb{N} \to \mathbb{N} \) be an injection fulfilling the condition

\[
\lim_{n \to \infty} \frac{g(n + k) - g(k)}{n} = 1
\]

uniformly for \(k = 1, 2, \ldots \). Then \(g \) preserves the uniform density.

For the proof we shall use the following statement proved in the paper [GLS].

Lemma. Let \(S = \{ s_1 < s_2 < \ldots \} \subset \mathbb{N} \) be an infinite set. The \(S \) has the uniform density if and only if the fraction

\[
\frac{n}{s_{n+k} - s_k}
\]

converges uniformly as \(n \to \infty \), \(k = 1, 2, \ldots \). And in this case the value of its limit is equal to the uniform density of \(S \).

Proof of Theorem 1. The condition (1) yields that for two sequences \(\{ h_1(n, k) \}, \{ h_2(n, k) \} \) such that \(h_1(n, k) - h_2(n, k) \to \infty, n \to \infty \) uniformly for \(k = 1, 2, \ldots \) we have

\[
\frac{g(h_1(n, k)) - g(h_2(n, k))}{h_1(n, k) - h_2(n, k)} \equiv 1, \quad n \to \infty
\]

(As usually we use the symbol \(\equiv \) for the uniform convergence.)

Let \(A = \{ a(1) < a(2) < \ldots \} \) be an infinite set, which has the uniform density and \(u(A) = \alpha \).

From Lemma we obtain

\[
\frac{n}{a(n + k) - a(k)} \equiv \alpha, \quad n \to \infty
\]

Put \(g(A) = \{ g(a(1)), g(a(2)), \ldots \} \). These elements are not necessarily arranged to their magnitude. Clearly \(a(n + k) - a(k) \geq n \), and so \(a(n + k) - a(k) \equiv \infty \) as \(n \to \infty \). The relation (2) now implies

\[
\frac{g(a(n + k)) - g(a(k))}{a(n + k) - a(k)} \equiv 1, \quad n \to \infty
\]

Therefore for suitable \(n_0 \) the fraction on left side is positive for \(k = 1, 2, \ldots, \) thus \(g(a(n_0 + k)) > g(a(k)), k = 1, 2, \ldots \). And so we see that the set \(g(A) \) we can decompose into a union of disjoint sets

\[
g(A) = B_1 \cup B_2 \cup \cdots \cup B_{n_0}
\]

where

\[
B_j = \{ g(a(j)) < g(a(j + n_0)) < \cdots g(a(j + rn_0)) \cdots \} \quad j = 1, \ldots, n_0.
\]
The relation (3) now implies

\[\frac{r \cdot n_0}{a(j + (r + k)n_0) - a(j + k \cdot n_0)} \to \alpha, \quad r \to \infty \]

Moreover the relation (2) yields

\[\frac{g(a(j + (k + r)n_0) - g(a(j + k \cdot n_0))}{a(j + (k + r)n_0) - a(j + k \cdot n_0)} \to 1, \quad r \to \infty \]

because the denominator is \(\geq r \cdot n_0 \) and so tends to \(\infty \) uniformly for \(k = 1, 2, \cdots \).

Thus from (6) and (7) we can deduce

\[\frac{r}{g(a(j + (k + r)n_0) - g(a(j + k \cdot n_0))} \to \frac{\alpha}{n_0}, \quad r \to \infty \]

and so \(u(B_j) = \frac{\alpha}{n_0}, j = 1, \cdots , n_0 \). From (5) we have \(u(g(A)) = \alpha \). \(\Box \)

Consider \(g(n) = n + c \cdot \log n + O(1) \). Then \(g(n + k) - g(k) = n + c \cdot \log (\frac{n}{k} + 1) + O(1) \), but \(O \leq \log (\frac{n}{k} + 1) \leq \log (n + 1) \) and \(g \) fulfills (1). Analogously it can be proved that

\[g(n) = n + c_1 \log_{r_1} n + c_2 \log_{r_2} (n) + \cdots + O(1) \]

where \(r_1, r_2, \cdots , r_j > 1 \) fulfills (1).

References

